



# **LED Display**

## **Product Data Sheet**

### **LTS-4301SW**

Spec No.: DS30-2008-0011

Effective Date: 02/22/2008

Revision: -

**LITE-ON DCC**

**RELEASE**

## LED DISPLAY

**LTS-4301SW**  
**DATASHEET**

| <u>Rev</u> | <u>Description</u>                                                          | <u>By</u>                        |
|------------|-----------------------------------------------------------------------------|----------------------------------|
| 01         | ORIGINAL<br><br>(Refer to contour drawing Revision (-))                     | <u>WARIN</u><br><u>07/19/07</u>  |
| 02         | Change pin length from 3.9 to 3.5+-0.5mm<br><br>And gray face to black face | <u>WARIN</u><br><u>12/25/07</u>  |
| 03         | Revise operation temperature                                                | <u>WARIN</u><br><u>1/10/2008</u> |

Above date for PD and customer tracking only

|   |                                  |                                  |
|---|----------------------------------|----------------------------------|
| - | NPPR Received and Upload on OPNC | <u>WARIN</u><br><u>1/18/2008</u> |
|   |                                  |                                  |

SPEC. NO.: DS30-2008-0011

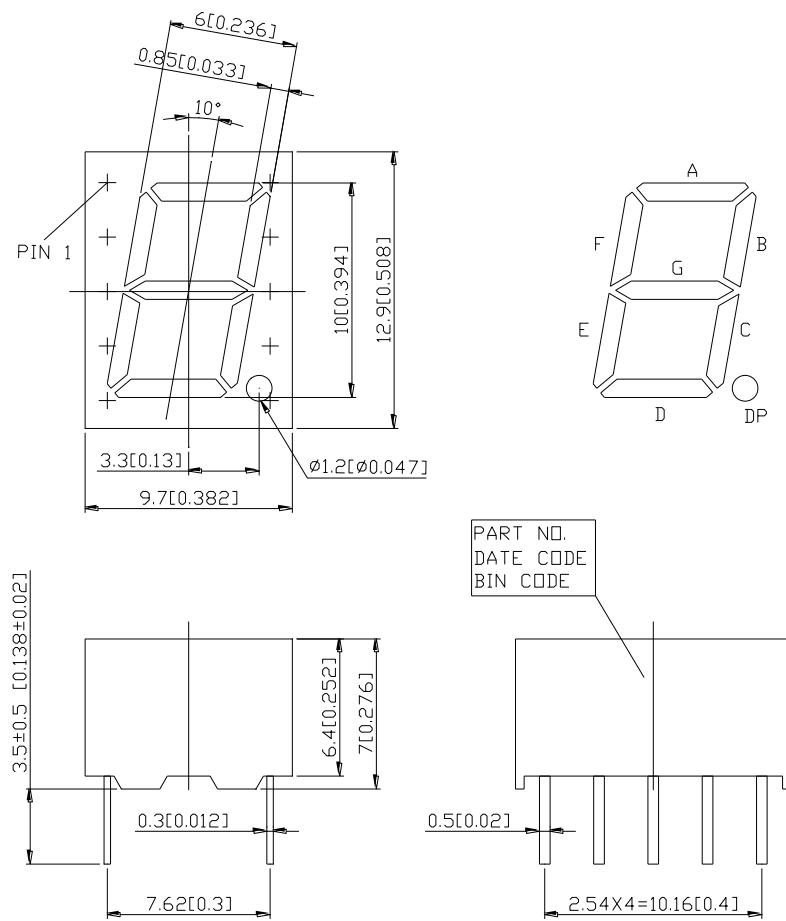
DATE : 1/18/2008

REV. NO. : -

PAGE NO. : 0 OF 10

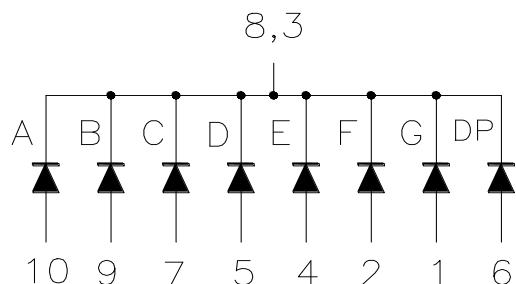
## **FEATURES**

- \* 0.4 inch ( 10.0 mm) DIGIT HEIGHT
- \* CONTINUOUS UNIFORM SEGMENTS
- \* LOW POWER REQUIREMENT
- \* EXCELLENT CHARACTERS APPEARANCE
- \* HIGH BRIGHTNESS & HIGH CONTRAST
- \* WIDE VIEWING ANGLE
- \* SOLID STATE RELIABILITY
- \* CATEGORIZED FOR LUMINOUS INTENSITY
- \* **LEAD-FREE PACKAGE(ACCORDING TO ROHS)**


## **DESCRIPTION**

The LTS-4301SW is a 0.4 inch (10.0 mm) digit height single digit seven-segment display. This device is the white-color display uses InGaN White LED chips. The display has a black face and white segments.

## **DEVICE**


| <b>PART NO.</b> | <b>DESCRIPTION</b> |
|-----------------|--------------------|
| WHITE-COLOR     | Common Cathode     |
| LTS-4301SW      | Rt. Hand Decimal   |

## PACKAGE DIMENSIONS



NOTES: 1. All dimensions are in millimeters. Tolerances are  $\pm 0.25$  mm (0.01") unless otherwise noted.  
2. Pin tip's shift tolerance is  $\pm 0.4$  mm.

## INTERNAL CIRCUIT DIAGRAM



**PIN CONNECTION**

| No. | CONNECTION     |
|-----|----------------|
| 1   | ANODE G        |
| 2   | ANODE F        |
| 3   | COMMON CATHODE |
| 4   | ANODE E        |
| 5   | ANODE D        |
| 6   | ANODE D.P.     |
| 7   | ANODE C        |
| 8   | COMMON CATHODE |
| 9   | ANODE B        |
| 10  | ANODE A        |

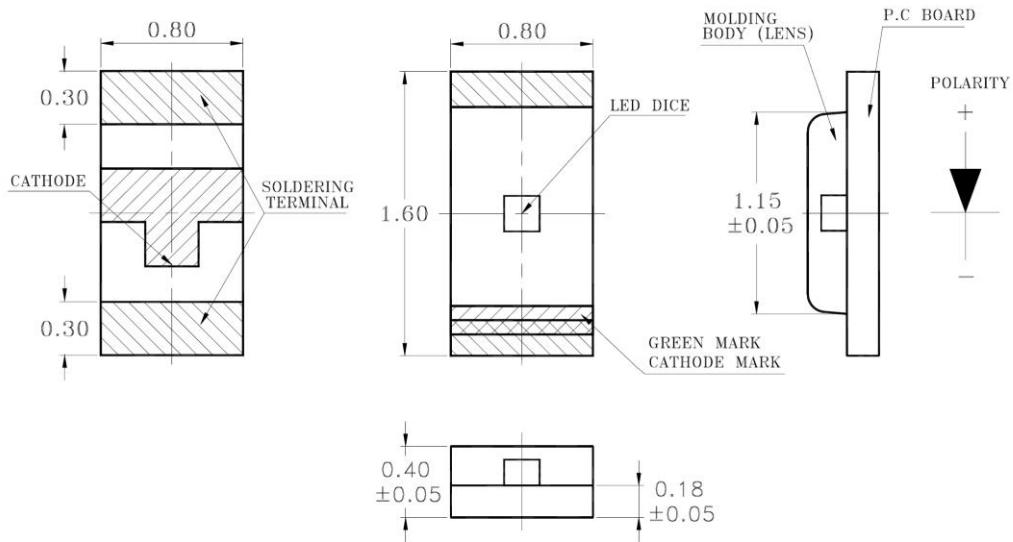
**ABSOLUTE MAXIMUM RATING**

| PARAMETER                                                                                                                                                     | MAXIMUM RATING  | UNIT  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|
| Power Dissipation Per Segment                                                                                                                                 | 115             | mW    |
| Peak Forward Current Per Segment<br>( Frequency 1Khz, 10% duty cycle)                                                                                         | 60              | mA    |
| Continuous Forward Current Per Segment                                                                                                                        | 20              | mA    |
| Forward Current Derating from 25°C                                                                                                                            | 0.25            | mA/°C |
| Reverse Voltage Per Segment                                                                                                                                   | 5               | V     |
| Operating Temperature Range                                                                                                                                   | -35°C to +105°C |       |
| Storage Temperature Range                                                                                                                                     | -35°C to +105°C |       |
| Soldering Condition:1/16 inch below seating plane for 3 seconds at 260°C.,<br>or temperature of unit (during assembly) not over max. temperature rating above |                 |       |

**ELECTRICAL / OPTICAL CHARACTERISTICS AT Ta=25°C****InGaN WHITE**

| PARAMETER                                                 | SYMBOL         | MIN.  | TYP.  | MAX.  | UNIT | TEST CONDITION       |
|-----------------------------------------------------------|----------------|-------|-------|-------|------|----------------------|
| Average Luminous Intensity Per Chip                       | I <sub>v</sub> | 13700 |       | 28000 | mcd  | I <sub>F</sub> =10mA |
| View Angle                                                | 2φ1/2          |       | 130   |       | deg  | Fig6                 |
| Chromaticity coordinates                                  | x              |       | 0.294 |       | nm   | I <sub>F</sub> =5mA  |
|                                                           | y              |       | 0.286 |       |      |                      |
| Forward Voltage Per Chip                                  | V <sub>F</sub> | 2.70  |       | 3.15  | V    | I <sub>F</sub> =5mA  |
| Reverse Current Per Chip                                  | I <sub>R</sub> |       |       | 10    | μA   | V <sub>R</sub> =5V   |
| Luminous Intensity Matching Ratio<br>(Similar Light Area) |                |       |       | 2:1   |      | I <sub>F</sub> =10mA |

Note: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commision Internationale De L'Eclairage) eye-response curve.


## WHITE LED SPEC

### Features

- \* Super thin (0.40H mm) Chip LED.
- \* Ultra bright InGaN White Chip LED.
- \* Package in 8mm tape on 7" diameter reels.
- \* Compatible with automatic placement equipment.
- \* Compatible with infrared and vapor phase reflow solder process.
- \* EIA STD package.
- \* I.C. compatible.

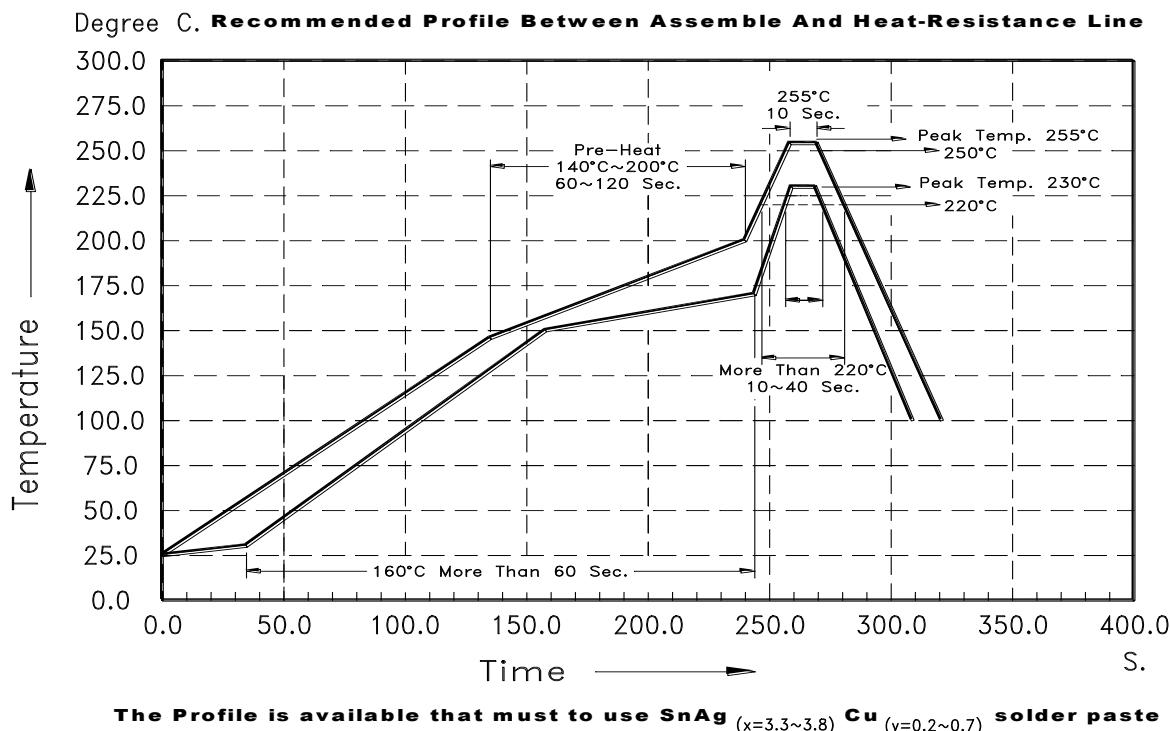


### Package Dimensions



| Part No.    | Lens   | Emitted Color |
|-------------|--------|---------------|
| LTW-C193TS5 | Yellow | InGaN White   |

#### Notes:


1. All dimensions are in millimeters (inches).
2. Tolerance is  $\pm 0.10$  mm (.004") unless otherwise noted.

# Property of Lite-On Only

## Absolute Maximum Ratings At $T_a=25^{\circ}\text{C}$

| Parameter                                                    | LTW-C193TS5                                     | Unit                   |
|--------------------------------------------------------------|-------------------------------------------------|------------------------|
| Power Dissipation                                            | 70                                              | mW                     |
| Peak Forward Current<br>(1/10 Duty Cycle, 0.1ms Pulse Width) | 100                                             | mA                     |
| DC Forward Current                                           | 20                                              | mA                     |
| Derating Linear From $25^{\circ}\text{C}$                    | 0.25                                            | mA/ $^{\circ}\text{C}$ |
| Reverse Voltage                                              | 5                                               | V                      |
| Operating Temperature Range                                  | $-35^{\circ}\text{C}$ to $+105^{\circ}\text{C}$ |                        |
| Storage Temperature Range                                    | $-55^{\circ}\text{C}$ to $+105^{\circ}\text{C}$ |                        |
| Soldering Temperature                                        | $260^{\circ}\text{C}$ For 5 Seconds             |                        |

Suggest IR Reflow Condition :



**Electrical Optical Characteristics At Ta=25°C**

| Parameter                | Symbol | Part No.<br>LTW- | Min. | Typ.  | Max.  | Unit | Test Condition                 |
|--------------------------|--------|------------------|------|-------|-------|------|--------------------------------|
| Luminous Intensity       | IV     | C193TS5          | 28.0 |       | 112.0 | med  | IF = 5mA<br>Note 1, 2, 5       |
| Viewing Angle            | 2θ 1/2 | C193TS5          |      | 130   |       | deg  | Fig.6                          |
| Chromaticity Coordinates | x      | C193TS5          |      | 0.294 |       |      | IF = 5mA<br>Note 3, 5<br>Fig.1 |
|                          | y      |                  |      | 0.286 |       |      |                                |
| Forward Voltage          | VF     | C193TS5          | 2.70 |       | 3.15  | V    | IF = 5mA                       |
| Reverse Current          | IR     | C193TS5          |      |       | 10    | µA   | VR = 5V                        |

Note : 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.

2. Iv classification code is marked on each packing bag.

3. The chromaticity coordinates (x, y) is derived from the 1931 CIE chromaticity diagram.

4. Caution in ESD:  
Static Electricity and surge damages the LED. It is recommend to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.

5. Tester  
CAS140B is for the chromaticity coordinates (x, y) and Iv.

6. The chromaticity coordinates (x, y) guarantee should be added  $\pm 0.01$  tolerance.

# Property of Lite-On Only

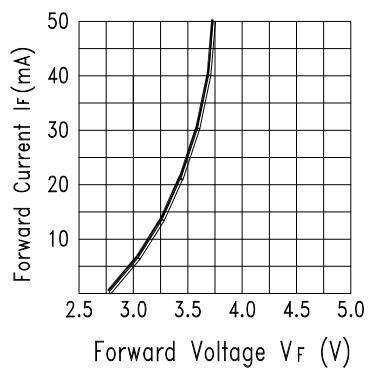



Fig.2 Forward Current vs.  
Forward Voltage

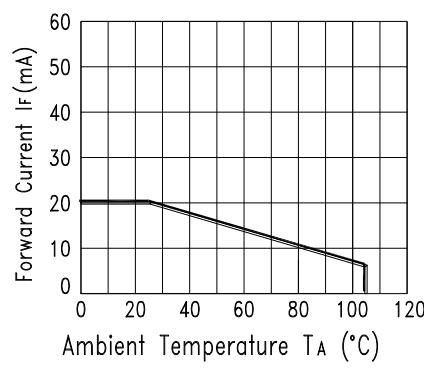



Fig.3 Forward Current  
Derating Curve

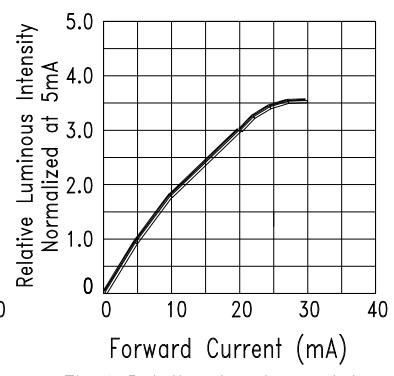



Fig.4 Relative Luminous Intensity  
vs. Forward Current




Fig.5 Luminous Intensity vs.  
Ambient Temperature

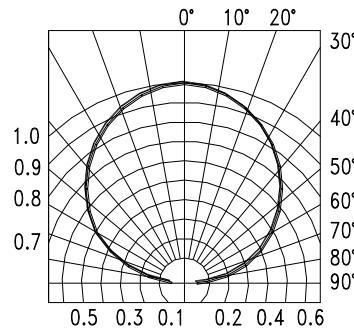



Fig.6 Spatial Distribution

NOTE : SMD

# Property of Lite-On Only

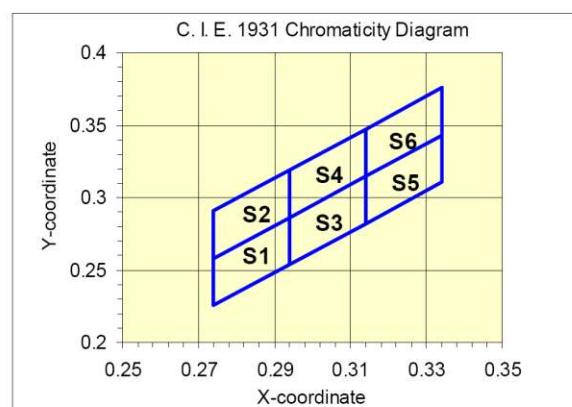
## Bin Code List

VF Spec. Table

| VF Bin | Forward Voltage (V) at IF = 5mA |      |
|--------|---------------------------------|------|
|        | Min.                            | Max. |
| A      | 2.70                            | 2.85 |
| B      | 2.85                            | 3.00 |
| C      | 3.00                            | 3.15 |

Tolerance on each Forward Voltage bin is +/-0.1 volt

IV Spec. Table


| IV Bin | Luminous Intensity (mcd) at IF = 5mA |       |
|--------|--------------------------------------|-------|
|        | Min.                                 | Max.  |
| N      | 28.0                                 | 45.0  |
| P      | 45.0                                 | 71.0  |
| Q      | 71.0                                 | 112.0 |

Tolerance on each Luminous Intensity bin is +/- 15%.

Hue Spec. Table

| Hue Bin | Color bin limits at IF = 5mA      |       |       |       |       |
|---------|-----------------------------------|-------|-------|-------|-------|
|         | CIE 1931 Chromaticity coordinates |       |       |       |       |
| S1      | x                                 | 0.274 | 0.274 | 0.294 | 0.294 |
|         | y                                 | 0.226 | 0.258 | 0.286 | 0.254 |
| S2      | x                                 | 0.274 | 0.274 | 0.294 | 0.294 |
|         | y                                 | 0.258 | 0.291 | 0.319 | 0.286 |
| S3      | x                                 | 0.294 | 0.294 | 0.314 | 0.314 |
|         | y                                 | 0.254 | 0.286 | 0.315 | 0.282 |
| S4      | x                                 | 0.294 | 0.294 | 0.314 | 0.314 |
|         | y                                 | 0.286 | 0.319 | 0.347 | 0.315 |
| S5      | x                                 | 0.314 | 0.314 | 0.334 | 0.334 |
|         | y                                 | 0.282 | 0.315 | 0.343 | 0.311 |
| S6      | x                                 | 0.314 | 0.314 | 0.334 | 0.334 |
|         | y                                 | 0.315 | 0.347 | 0.376 | 0.343 |

Tolerance on each Hue (x, y) bin is +/- 0.01.



## CAUTIONS

### 1. Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

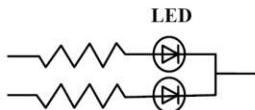
### 2. Storage

The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are IR-reflowed within one week. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant, or in a desiccators with nitrogen ambient. LEDs stored out of their original packaging for more than a week should be baked at about 60 deg C for at least 24 hours before solder assembly.

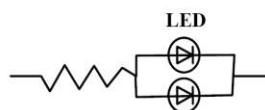
### 3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED if necessary.

### 4. Soldering


Recommended soldering conditions:

| Reflow soldering |               | Wave Soldering |              | Soldering iron |                 |
|------------------|---------------|----------------|--------------|----------------|-----------------|
| Pre-heat         | 120~150°C     | Pre-heat       | 100°C Max.   | Temperature    | 300°C Max.      |
| Pre-heat time    | 120 sec. Max. | Pre-heat time  | 60 sec. Max. | Soldering time | 3 sec. Max.     |
| Peak temperature | 240°C Max.    | Solder wave    | 260°C Max.   |                | (one time only) |
| Soldering time   | 10 sec. Max.  | Soldering time | 10 sec. Max. |                |                 |


### 5. Drive Method

An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below.

Circuit model A



Circuit model B



(A) Recommended circuit.

(B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs.

### 6. ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED.

Suggestions to prevent ESD damage:

- Use of a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- All devices, equipment, and machinery must be properly grounded.
- Work tables, storage racks, etc. should be properly grounded.
- Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling.